

UNIVERSIDAD ADOLFO IBAÑEZ FACULTAD DE INGENIERIA Y CIENCIAS DOCTORADO EN INGENIERIA DE SISTEMAS COMPLEJOS

Equilibrium and Non-Equilibrium in a Reversible and Conservative Cellular Automaton

Felipe Andrés Urbina Parada

Advisor	:	Professor Sergio Rica
Commission	:	Professor Pierre Coullet Professor Alejandro Maass Professor Marco Montalva Professor Enrique Tirapegui

Facultad de Ingeniería y Ciencias Universidad Adolfo Ibáñez

Abstract

The main goal of this thesis, relies the dynamics of a reversible and conservative cellular automaton Q2R model. Q2R is a automaton that runs on a two-dimensional grid of finite size and is reversible in a physical sense, that is, not only is the automaton rule invertible, but the backward rule reads exactly the same as the forward one. This model is a dynamical variation of the Ising model for ferromagnetism that possesses quite a rich and complex dynamics.

As expected, the Q2R automaton only possesses fixed points and periodic orbits and it has been shown that possesses an energy like quantity, and, at least an extra conserved quantity. Although, the dynamics includes only fixed points and periodic orbits, numerical simulations show that the system exhibits a ferromagnetic phase transition in the large system size limit for a well defined critical energy.

In the present work, we characterize the configuration space, that is composed of a huge number of cycles with exponentially long periods. More precisely, we quantify the probability distribution functions of states in terms of the aforementioned invariants. We show that the dynamics of the system in the phase space appears to be, depending on the energy, a random walk or a Levy flight.

The main contribution of the present thesis is the application of a coarsegraining approach that allows to write a coarse-grained master equation, which characterizes equilibrium and non equilibrium statistical properties, for the Q2R model. Following Nicolis and collaborators, a coarse-graining approach is applied to the time series of the total magnetization, leading to a consistent master equation that governs the macroscopic irreversible dynamics of the Q2R automata. The methodology is replicated for various lattice sizes. In the case of small systems, we show that the master equation leads to a tractable probability transfer matrix of moderate size, which provides a master equation for a coarse-grained probability distribution. The method is validated and some explicit examples are discussed.

Contents

Agradecimientos Abstract											
						Introduction					
1	Around of the Ising model										
	1.1	Ising-based models									
		1.1.1	Generalities		6						
		1.1.2	The time-dependent Glauber-Ising Model		7						
		1.1.3	The Q2R cellular automata		8						
		1.1.4	Schelling model for Social segregation.		9						
		1.1.5	Bootstrap percolation		10						
		1.1.6	Recapitulation		11						
	1.2	Ising _I	patterns, transitions, and dynamical behavior		12						
		1.2.1	Glauber and Decision-Choice model dynamics		12						
		1.2.2	Schelling dynamics		14						
		1.2.3	Bootstrap percolation	•	15						
2	The Q2R Cellular Automaton										
	2.1	The G	22R model		29						
		2.1.1	The rule		29						
		2.1.2	Energy Conservation		31						
		2.1.3	Staggered Invariants		32						
		2.1.4	The Magnetization		33						
		2.1.5	Mean Field Approximation		33						
	2.2	Dynar	mics of the Q2R model \ldots \ldots \ldots \ldots \ldots \ldots \ldots		34						
		2.2.1	Initial conditions		34						
		2.2.2	One-dimensional Systems		34						
		2.2.3	Two-dimensional Systems	•	35						
		2.2.4	Ferromagnetic and Paramagnetic Behaviors	•	36						
		2.2.5	Phase Transition		37						

		2.2.6	Exact results from the Ising model in statistical mechanics	40			
3	The 3.1 3.2	Phase Genera Exact 3.2.1 3.2.2	e Space characterization alities	43 43 44 44 44			
	3.3	The ev 3.3.1 3.3.2 3.3.3	volution of states in configuration space	46 46 48 50			
4	Coa 4.1 4.2 4.3 4.4	rse-Gr Genera 4.1.1 4.1.2 4.1.3 Specifi 4.2.1 4.2.2 4.2.3 Slow n 4.3.1 Appen 4.4.1 4.4.2	aining and Master Equational ScopeGeneral formalismExplicit calculation for the transition probability matrix \hat{W} The Chapman-Kolmogorov condition and time reversal symmetry.c computation of the transition probability matrix in various situationRobustness of the methodology.Exact calculation for various lattices.The Chapman-Kolmogorov conditions.Exact calculation for various lattices.Pomeau's reversal symmetry relation.dixExact calculation for the 4 × 4 lattice.The Chapman-Kolmogorov condition	53 53 57 57 15 . 59 62 64 67 69 69 69 69 71			
5	Con	clusior	18	73			
Bi	Bibliography						
A	Appendices						
A Article							
В	B Article						
\mathbf{C}	C Article 10						