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Abstract

A microbiome is a community of microorganisms that inhabit a particular environ-
ment like soils, oceans or the human body. Those communities are made of a trillion of
microorganisms divided into a dozen or even hundreds of different species which inter-
acts among them. The community behaves as a complex adaptive system and fluctuates
in response to changes in environmental factors such as acidity, pressure, temperature
or, when are host related it is sensible to perturbations like antibiotics, changes in the
diet and lifestyle factors. The recovery of the genetic material of the microbial commu-
nities directly from their environment, the classification and study of these samples is
called Metagenomics. The digitalization of the genetic material is done by high through-
put sequencing technologies, such as Illumina which shreds the DNA into fragments
called reads.

In the first part of this work we propose a alignment-free method capable of assign
taxa to each read in a metagenomic sample by analyzing the statistical properties of the
reads. Given an environment, we collect genomes from public available databases and
generate synthetic genomic fragments libraries. Then, statistics of k-mer frequencies
are computed and stored in an environment-associated dataset used to build a robust
machine learning procedure based on multiple CART trees.

In the second part we study the dynamics of a gut microbiome under antibiotic
perturbation and Clostridium difficile infection (CDI). Here, interactions play a key role
in the development of the disease. Using a previously Boolean network model for CDI
we demonstrate that this model is in fact a threshold Boolean network (TBN). Once
the TBN model is set, we further explore the space of possible interactions generating
an evolutionary algorithm to identify alternative TBNs. Allowing the construction of a
neutral space conformed by a set of models that differ in their interactions, but share the
final community states of the gut microbiome under antibiotic perturbation and CDI.
We organize the resulting TBNs into clusters that share similar dynamic behaviors and
the most relevant interactions are identified. Finally, we discuss how these interactions
can either affect or prevent CDI.

In the third part we examined the microbial community across a transect of few
kilometers long, where there is a remarkable abiotic variations like pH, temperature and
humidity gradient, with acidic soils, to name a few. We studied the compositional struc-
ture of the community and constructed two co-occurrence networks representing two
sections that divided the transect. Using network analysis, we examined changes in pu-
tative ecological interactions among microbial Operational Taxonomic Units (OTUs), as
well as their associations to physicochemical and nutritional variables. Network com-
parisons allowed us to examine the nature of the ecological rearrangements that take
place in the microbial community when facing contrasting environments. L-GRAAL,
the graph alignment method we used provides a comprehensive way to understand
topological shifts among members from two networks. We show here that this method
provides a glimpse into the nature of the changes in microbial communities that can
foster resistance and resilience to contrasting environmental conditions.
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