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Abstract

Jumping locomotion is present in many organisms, such as plants, fungi, insects and verte-
brates which describe a wide variety of jumping mechanisms. Surprisingly, jumping organisms
are limited to a very narrow range of take-off velocity (below 6 m/s). To explain the jumping
limit observed in nature, we propose a definition of jumping that encompasses a diversity of
organisms. We introduce a physical model which provides an understanding of the limit. The
model hand over kinematic and dynamic constraints added to biological aspects.
The main results are that general mechanical considerations provide an upper bound for the
take-off velocity of any jumper, animate or inanimate, rigid or soft body, animal or vegetal.
The take-off velocity is driven by the ratio of released energy to body mass. Further, the mean
reaction force on a rigid platform during push-off is inversely proportional to the characteristic
size of the jumper. These general considerations are illustrated in the context of Alexander’s
jumper model which can be solved exactly and which shows an excellent agreement with the
mechanical results. These aspects of the jump can be applied to understand the limit of nature
and the construction of artificial devices to jump’s way locomotion.

Finally, we complement the jumping research with a case of study of a very good jumper,
the jerboa(rodent). This is a highly manoeuvrable bipedal rodent, with multiple tail behaviors
such, that the tail is elevated and actively controlled during locomotion, provides support during
standing, and acts as a fifth limb for juvenile jerboas when learning to walk. We collect experi-
mental data obtained specifically from the tail of Jerboa and we proposed models representing
its through an elastic structure. The first approach helps in developing a model of the particular
S shape of the animate tail; the second one allows to calculate bending stiffness of the tail with
experimental mechanics and elastic model (inanimate tail).
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