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Abstract

The capacity of large forest units to influence local weather has been well stud-
ied. Evidence from the Amazon suggests that these forests can affect regions deep
within the continent through a spillover effect in wind direction, which promotes
vegetation growth. Are we therefore witnessing an impact of an ecosystem service
provided by forests in regulating local weather? In this work, I test this hypoth-
esis for central-south Chile, because of the presence of a large forestry industry
and remnants of native forests. Using satellite remote sensing data spanning the
last two decades and a Spatial-Panel model to estimate the impact of the spatial
effects of forest units. A positive correlation between forest units has been found
suggesting the existence of this phenomenon. Given these discoveries, when test-
ing heterogeneous effects by municipalities of an increase of forests NDVI, suggests
the existence of a positive externality, but a direct mechanism that increases the
production in nearby croplands, because of the better conditions given by forests,
meaning an increase in the income of the agricultural related workers, remains
still unclear because ambiguous results.
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1 Introduction

Forests are well known for their ecological role, yet quantifying the economic
value of their ecosystem services remains challenging and must be considered in rela-
tion to the industries that they influence (Sagoff, 2011). One of them that has not
been extensively studied due to the difficulty of identification is their role in the water
cycle. Large forests transport humidity through the wind, and the movement of water
vapor originating from forests enhances conditions for vegetation growth and influences
weather patterns far beyond the moisture source (Makarieva and Gorshkov, 2007).
Therefore, one would expect an intriguing positive relationship between the proximity
of forests to croplands and their productivity (Teixeira et al., 2021). In the context
of climate change, forests are expected to have a positive impact on regulating local
weather, helping to mitigate the effects of extreme events that generate uncertainty on
the agricultural industry (Depetris-Chauvin et al., 2023).

A great portion of land use is determined by landowners’ choices to maximize
their benefits. However, two constraints influence these decisions: on one hand, the
natural land conditions, which limit production options but can offer comparative ad-
vantages under favorable circumstances; and on the other hand, incentives such as pol-
icy or market forces, which shape what can be produced (Murtazashvili et al., 2019).
Evidence of this can be seen in shifts between different types of crops or transitions
between forests and croplands, or vice versa. These decisions are influenced by the
demand for each type of product or trade frictions, such as import tariffs. For example,
closed economies tend to adjust land use to meet internal demand(Foster and Rosen-
zweig, 2003). In contrast, open economies tend to adjust their land use in response
to international commodity prices (Farrokhi et al., 2023). If these choices are made
without considering the spatial effects of forests, they could lead to the degradation of
the ecosystem and a shift to less productive alternative (Staver et al., 2011) through
the loss of forest services or a shift to land uses with limited reversibility, such as mining.

This thesis has two main objectives: First, to test the hypothesis that, on a large
scale and in the average wind direction, the movement of water vapor from forests en-
hances conditions for vegetation growth and influences weather patterns far beyond the
moisture source in Chile, specifically between latitudes 30° and 40°. If this hypothesis
holds, we would expect to econometrically demonstrate a correlation between forests in
the upstream direction of prevailing winds and vegetation patterns downstream. Sec-
ond, to assess the sign and significance of this phenomenon on the income of individuals
involved in agricultural activities.

For this exploratory investigation, I first use satellite remote-sensing data from
the last two decades (2001-2023) for central-southern Chile (between latitudes 30° and
38° south). This data includes the Normalized Difference Vegetation Index (NDVI) and
other weather controls. The novel approach involves using a Spatial-Panel model to
test the average spillover impact of neighboring areas’ vegetation on vegetation levels
in the wind direction that is defined by the weight matrix (Araujo et al., 2023).
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To measure the economic value, I analyze heterogeneous effects across munici-
palities (the smallest administrative units in Chile) based on the amount of vegetation
measured by NDVI. Additionally, I use land use change data to differentiate between
types of vegetation, such as Native and Commercial Forests, and incorporate this infor-
mation as an input for household income data from the CASEN survey, which assesses
the socioeconomic characteristics of Chile. The methodology involves a simple regres-
sion analysis, incorporating environmental information at the municipal level. This
approach is inspired by existing literature on the effects of protected areas on local
communities (Cheng et al. (2023);Kalinin et al. (2023)) and previous studies conducted
in Chile about the impact of commercial forests (Bonilla-Mej́ıa and López, 2024).

After identifying a significant average impact from the spillover effect of down-
wind neighbors, with increases ranging from 0.1 to 0.4, these results suggest the ex-
istence of a phenomenon where forests enhance vegetation growth conditions in the
direction of the wind across the continent’s interior. This pattern is consistent across
all regions studied and motivates further investigation into whether this phenomenon
positively impacts household income by reducing the uncertainty associated with cli-
mate change and improving plantation growth. Given this, a positive impact would
be expected for farmers in municipalities with greater forest vegetation (Castle et al.,
2022). The results indicate a positive correlation between increases in a municipality’s
average NDVI of forests and household income. However, a direct link to individuals
involved in the agricultural sector was not established. Additionally, the data was insuf-
ficient to differentiate between the effects of native forests and commercial plantations,
with mixed signals observed.

The understanding of the relationship of forest spillover effects in regulating local
weather enriches the policy maker discussion over land use regulation and the optimal
designation of new reserves or national parks (Fetzer and Marden (2017);Araujo et al.
(2020)). Also this works is part of the literature of ecosystem services awareness (Lau-
rans et al., 2013). Additionally, can works as input for more complex models as forest
plantation rotation models (Piazza and Roy, 2019) or macroeconomic models that ac-
counts for the agricultural and forestry industries (Banerjee et al., 2021). Ultimately,
my research would help to address the gap in information regarding the interconnection
of portions of forests through the water-recycling process in Chile.

The order of this thesis is the following (2) Background (2.1) Evidence of the
the role of forests in the water cycle, (2.2) The Chilean case, why is an interesting
experimental site to test this. (3) Data sources and summary statistics. (4) Empirical
approaches. (5) Results analysis. (6) Conclusion. (7) Appendix.
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2 Background

2.1 Evidence in the Amazon Rainforest

This phenomenom has been widely studied for tropical forests and with special
attention in the Amazon forest given its international significance in influencing global
weather patterns (Shukla et al., 1990). The results of these studies highlight the criti-
cal role of forests by contributing significantly to their own hydrological cycle through
processes such as transpiration and cloud formation ((Staal et al., 2023); (Clara Zemp
et al., 2017)), being this process of moisture recycling (or precipitation recycling) rel-
evant for areas far away from the natural moisture of the sea (Hirota et al., 2011), an
example of this is the heightened sensitivity to drought observed in the southwestern
region of the Amazon (Smith et al., 2023).

The alarming issue is climate change, which is expected to prolong the duration
of the dry season in the region (Boisier et al., 2015). This could trigger a vicious cy-
cle: trees may not survive the prolonged dry season, coupled with reduced precipitation,
leading the forest to produce insufficient moisture. This may lead into trespassing a tip-
ping point, potentially causing irreversible ecological changes in the region, transitioning
from tropical forest to savannah or treeless terrain (Staver et al. (2011); Verbesselt et al.
(2016)).

The direct economic impact of this issue includes the loss of precipitation in
nearby areas, which could jeopardize rain-dependent croplands like soy in Brazil (Teix-
eira et al., 2021). Additionally, the reduction in air moisture may escalate the risk of
fires in the region. In summary, the main findings suggest that deforestation has spatial
effects, that extend beyond the deforested region, influencing weather patterns in the
direction of wind.

The origin of this phenomenon may be explained by the basin’s inherent abilities
to attract and capture moisture from the sea, a phenomenon supported by the controver-
sial biotic pump theory (Makarieva and Gorshkov, 2007). Because large forested areas,
characterized by higher rates of evapotranspiration compared to the sea, would at-
tract the fluxes of air with moisture. This phenomenon suggests a relationship wherein
regions with dense vegetation tend to receive more precipitation than treeless areas
(Spracklen et al. (2012); Sing et al. (2023)). This theory would explain the capacity
of forests to transport humidity inside the continent, with the water recycling process,
because forests would keep moving moisture far away from the sea.

Hence anthropogenic disturbances, such as the clear-cutting of native forests and
large fires along the coast, are likely linked to the reduction of vegetation within the
continent. Among the difference between the tropical rainforests, and the temperate
ones here in Chile, is necessary to take the evidence in the literature that suggests
that there could be a different effect depending on the type of vegetation. A notable
differentiation emerges between Native Forests and Commercial Forest Plantations. In
the context of the biotic pump theory, it is that only native and biodiverse forests that
evolved in the local conditions would be able to produce this phenomenon and keep
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a healthy environment that moves humidity into the forest (Makarieva and Gorshkov,
2007). Furthermore, empirical evidence indicates that forest plantations exhibit re-
duced capacity for water retention following rainfall. The limited permeability of the
soil leads to rapid drainage into surrounding basins, even more, captures less humidity
than native forests, and alters the soil composition. (Balocchi et al., 2022). Having
a negative impact on neighborhood areas, discouraging local farmers from establish-
ing near forest plantations. Some novel work does this connection, using the national
National Socioeconomic Characterization Survey (CASEN) in conjunction with the na-
tional forest inventory compiled by the National Forestry Corporation (CONAF) To
measure the impact of Plantation Forest expansion on family income at the municipal
level. Their findings suggest that there is no green growth with commercial forests
because the house income decreases if there is an expansion of Forest Plantations in
their municipality (Bonilla-Mej́ıa and López, 2024). Consequently, it is imperative to
introduce control variables with the type of forest or the use of soil.

2.2 The Chilean Case

The central-south of Chile, between latitudes 34° and 40°, serves as an intriguing
experimental site to examine this relationship. This region has witnessed a significant
expansion of the forestry industry since the 1970s, driven by efforts to augment eco-
nomic growth by promoting forestry and mitigate erosion resulting from previous land
use for croplands. (Balocchi et al., 2022). Incentives were introduced to encourage the
conversion of native forest and eroded land into commercial forestry in the central-south
region of Chile. The predominant species utilized for this purpose include Pinus radiata
(cycles of 18 to 25 years for harvesting) and various types of Eucalyptus (cycles of 10 to
12 years for harvesting), representing an increase in forested areas. Nevertheless, there
has been a significant conversion from native forests to plantation forests, exceeding
10% in the three main administrative regions of our study area (Maule, Biob́ıo, and La
Araucańıa) between 1986 and 2011, with this trend likely dating back decades. (Heil-
mayr et al., 2016).

Chile also has the particularity of having two mountain ranges, running from
north to south. One is along the coast, characterized by smaller peaks compared to
the Andes mountain range, which boasts peaks averaging over three to four thousand
meters above sea level. As with any mountain range, they serve as a natural barrier
that captures the humidity that comes from the sea (Makarieva and Gorshkov, 2007).

In the coastal range are found the vast majority of the commercial forests plan-
tations. In Chile by the year 2008, the amount of plantations was approximately 2.24
million hectares which constituted just 14% of the total forest area in continental Chile.
The forestry industry accounted for nearly 7.3% of the GDP, making it the second
largest industry after the mining sector.(Raga, 2009). Nevertheless, in the latest re-
port, in 2022 the percentage represented by the industry was 1.6% of the total GDP.
This reduction may be attributed to variability resulting from periods of harvesting and
fluctuations in international demand. Also, the sector saw a decrease in the number of
employed workers. (Poblete Hernández et al., 2023).
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Obviously There is a controversial aspect regarding commercial forest planta-
tions. On one hand, they increase water runoff by flowing on the surface instead of
being absorbed, and they exhibit high rates of evapotranspiration due to their rapid
growth (Little et al., 2009). Additionally, they contribute to increased fire occurrence,
as evidenced near Valparaiso city (Ruiz et al., 2017), and displace agricultural lands.
On the other hand, alternative land uses such as croplands with poor management could
have even worse environmental impacts. This study suggests a potential positive im-
pact from the forestry industry while acknowledging that natural native forests remain
the optimal choice for environmental conservation. It is important to assess whether
the positive or negative externalities from the forest industry carry more weight and to
compare these findings with the remaining native forests.

The mechanism that needs to be studied is whether this phenomenon occurs
in Chilean forests whether in Native or Commercial Plantations. If it does, we would
expect agricultural communities to experience reduced uncertainty from weather shocks.
Consequently, municipalities with higher levels of forest vegetation would, on average,
have higher incomes than those in other municipalities, due to increased crop production
and larger revenues. Conversely, if the negative externalities of commercial plantations
outweigh the benefits, an increase in plantations could negatively impact nearby crop
agriculture, potentially displacing it. This is critical because the agricultural sector
employs more workers and has shorter cycles between harvests compared to the forestry
sector.
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3 Data

For the study of the existence of the ecosystem service, remote sensing data was
essential. A summary of the data sources is provided in Table 1. The main environ-
mental variables—NDVI (vegetation index), precipitation, evapotranspiration, humid-
ity, land temperature surface—were sourced from Google Earth Engine (GEE) imagery,
accessed via the ”rgee” API (Application Programming Interface). and complemented
with ”rgeeExtra” (Aybar et al., 2020) Using the pre-calculated datasets, that use di-
verse bands of information capture monthly (Donaldson and Storeygard, 2016)

For the construction of the weight matrix, the necessary data included the back
trajectories of the wind. I utilized the ”SplitR” library within RStudio, which imple-
ments the methodology for analyzing and modeling these trajectories with an HYSPLIT
model (Hybrid Single-Particle Lagrangian Integrated Trajectory) (Stein et al., 2015),
that was developed by NOAA (National Oceanic and Atmospheric Administration) also
from there comes the atmospheric data of the wind.

For the land use and socioeconomic data, I sourced information directly from
Chilean institutions. The land use data is essential for distinguishing between the ef-
fects of different forest types and identifying patterns in NDVI values. This information
is obtained from the Land Use Cadastre conducted by the National Forest Corporation
(CONAF), sourced from the Department of Territory Information System (SIT).

The socioeconomic data comes from the CASEN survey, which includes house-
hold income and various other variables, compiled by the Ministry of Social Devel-
opment and Family. I utilized the last four surveys. Although there was a survey
conducted during the pandemic in 2020, I opted not to include it due that the data
reflects the shocks caused by the health crisis.

The primary dataset depicted in Table 2, includes the vegetation index, in this
case, the Normalized Difference Vegetation Index (NDVI) is calculated as the normal-
ized difference between visible and near-infrared light reflection. Higher NDVI values
indicate denser vegetation due to lower reflection of visible light and higher reflection
of near-infrared light. Conversely, lower values suggest lower vegetation density (refer
to Appendix 7.2 for further details) (Didan, 2021). The subsequent data in the table
encompasses key weather variables, being precipitation and evapotranspiration both
of them are measured in millimeters over a specified time period (Abatzoglou et al.,
2018). Additionally, the data includes the Specific Humidity, that is the concentration
of water vapor mass present in a certain mass of air in a relationship of kilograms per
kilograms. (McNally, 2018).

As illustrated in Table 2, the original data frame contains 3,066,912 observations
for the 92 periods contained in the variable time, which accounts for each quarter in the
range of the twenty-three years from 2001 until 2023. Each period consists of 33,336
pixels at a resolution of 2000 meters. In order to be able to process the data with the
computer’s limitations, I divided the data frame into the regions of O´higgins, Maule,
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Data Source Use

Environmental Data

Wind direction NOAA (National Oceanic
and Atmospheric Adminis-
tration), NCEP-NCAR Re-
analysis 1

For building the average back tra-
jectories for the spatial weight
matrix ”W”.

Normalized Diference
Vegetation Index
(NDVI)

MODIS (Moderate-
Resolution Imaging Spec-
troradiometer)

It´s the Vegetation Index, for the
study is the dependent variable
goes from 0 to 1.

Precipitation (PP) Terra Climate Control variable for the study of
NDVI.

Evapotranspiration
(ET)

Terra Climate Also a control variable.

Humidity (HU) FLDAS from NASA Also a control variable.
Land Surface Temper-
ature (LST)

MODIS Also a control variable.

Land Use Data

Cadastre of Land Use
per Region

Department of Territory
Information System (SIT)
from The National Forest
Corporation (CONAF)

This information allows to distin-
guish the type of forest and the
location.

Socioeconomic Data

Houshold information National socioeconomic
characterization survey
(CASEN)

It´s use in the regresion with het-
eregenous effects by municipality,
contains also control variables as
the gender, economic status, etc...

Table 1: Summary of the data sources

Ñuble and B́ıobio with parts of the Araucania region. The primary aim was to preserve
spatial coherence within the data (Because of the spatial consideration is not possible
to take aleatory sub-samples of pixels).

As presented in Table 3, the difference in the average of the 92 periods between
the main data frame and the regions is almost zero, except for the precipitation vari-
able, because the precipitation declines if we move from north to south in continental
Chile (Refer to Appendix 7.2).

The econometric model under examination exploits the variations originating
from the clear-cutting process of forest plantations and and other deforestation pro-
cesses. Although when assessing the annual average of the dependent variable, the
values exhibit apparent constancy over the years, as illustrated in Table 4.

For the spatial weight matrix, I needed to connect the pixels in the way of the
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average back trajectory of the wind. Using the wind information data, I calculate 2
day back trajectories for a sample of pixels (it is what takes to the back trajectory to
reach the ocean), in every season of the year in a sample of years in the range of study
(2001-2023), using the meteorogical data from NCAR/NCEP global reanalysis data.
(Refer to Appendix 7.1 for further information).

After this exercise, the average back trajectory for a point in central-south Chile
is depicted in Figure 3. The first step I took was to linearize the average back tra-
jectories of wind, leading to the conclusion that the simplest approach was to account
for direct left, below, and diagonal left-below contiguity of the pixels as first-degree
neighbors. An example of this process is shown in Figure 4.

The weight matrix, denoted as W 1, is the result of the Hadamard multiplication
between the wind matrix, which captures only the connections influenced by wind, and
the matrix representing the total first-degree neighbors for each pixel [i,j]. This neigh-
bor matrix, constructed from actual data, accounts for all neighboring pixels and can
be visualized similarly to the possible moves of a queen on a chessboard, since the data
is organized in a grid format.

About the Land Use information, I aggregated the data into a 2000-meter pixel
resolution using a counting formula. Each pixel in my dataset represents the most
common land use type derived from a bigger resolution of pixels in the original cadas-
tre. However, this approach has a notable limitation: the periodicity of dataset updates.

The type of Land Uses are: Urban and Industrial areas; Agricultural Land;
Grasslands and Shrublands; Forests; Wetlands; Areas Devoid of Vegetations; Glaciers
and Snow; Water bodies. And using the Land Underuse information I was able to
distinguish between Native Forests or Forests Plantations (Commercial Forests).

To address the limitation of the cadastral data’s infrequent updates, which oc-
cur approximately once per decade, I assume that the cadastral data for each region
remains valid for an entire decade. This allows me to merge them into a single dataset
covering at least half of the panel data’s time span. Given the slow pace of land use
changes and the 2000-meter resolution of my analysis, minor changes would likely go
unnoticed, making this assumption reasonable. In Table 6, ”The latest” is the append
of each region and is valid from 2012 until 2023, and ”The prior update” is the append
of each region and is valid from 2001 until 2011.

Subsequently, Table 7 presents the changes in Land Uses between each period,
detailing the alterations per municipality. These changes will be utilized to estimate
the economic value. It’s important to note that the municipality is the smallest official
administrative subdivision in Chile. In Graphic 7, a Sankey diagram illustrates the
main land use changes. It’s important to note that the increase in Native Forests is
not an ecological miracle, The primary native forest in the north of the range of the
study area is the sclerophyllous forest, which by definition exists in the intermediate
zone between tall bushes and trees. Even usually the Land Underuse of ”Grasslands
and shrublands” is native forests, for the same reason.
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However, it is importat to highlight the limitations of the datasets, which con-
tains only data within the latitude range of 34° to 38° south due to computer limitations,
In Appendix 7.3 and 7.4 are examples of how it looks the data in a map. Additionally,
the results are valid only to a 2000-meter resolution due to the ’modifiable areal unit
problem’ (MAUP). This issue arises because the construction of the resolution involves
averaging values or assigning the most common value for example for the land use cat-
egories.

Variables Obs Mean Standard Deviation Min Max
NDVI 3,066,912 0.549 0.25 0 0.955
PP 3,066,912 70.991 71.414 0 651
ET 3,066,912 81.278 47.413 0 190.1
HU 3,066,912 0.005 0.001 0 0.009
Time 3,066,912 46.5 27.916 1 92
Notes:

Table 2: Summary statistics for the entire dataset, where the acronyms stand for:
NDVI: Normalized Difference Vegetation Index; PP: Precipitation; ET: Evapotranspi-
ration; HU: Humidity or Moisture; Time: unit of time identification in quarters of
years, that contains from 2001 until 2023.

Variables Obs Mean Standard Deviation Min Max
NDVI 1,073,640 0.492 0.256 0 0.933
PP 1,073,640 57.5355 55.227 0 344
ET 1,073,640 82.836 48.288 0 160.9
HU 1,073,640 0.005 0.001 0 0.009
Time 1,073,640 46.5 26.557 1 92
Notes:

Table 3: Summary statistics for the Maule region, all-time average (2001-2023) (11,670
observations * 92 periods)

Variables Obs Mean Standard Deviation Min Max
NDVI 2001 46,680 0.48 0.255 0 0.905
NDVI 2008 46,680 0.483 0.251 0 0.904
NDVI 2016 46,680 0.52 0.253 0 0.933
NDVI 2017 46,680 0.484 0.255 0 0.928
NDVI 2023 46,680 0.481 0.257 0 0.899

Notes:

Table 4: Summary statistics for the Maule region, year average (obs. = 11,670 obser-
vations * 4 periods (four quarters))
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Figure 1: NDVI values in the Maule region of 11,670 pixels/observations in 2016 fourth
quarter. At 2000 meter resolution.

Variables Obs Mean Standard Deviation Min Max
NDVI 2016q4 11,670 0.525 0.236 0 0.884
NDVI 2017q4 11,670 0.506 0.242 0 0.878

Notes:

Table 5: Summary of the NDVI values presented in Figures 1 and 2 respectively. In
the Maule region.
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Figure 2: NDVI values in the Maule region of 11,670 pixels/observations in 2017 fourth
quarter. At 2000 meter resolution.

Figure 3: Represents the average of 48 hrs wind direction, within a sample of points,
the lines represent the average back trajectories that arrive at an average point. Sug-
gesting that the weight matrix should be represented as depicted in Figure 2. Further
information is explained in Appendix 6.1.
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Figure 4: From left to right, the first step involves displaying the raw average wind direc-
tion, followed by its linearized form, and then an illustration of the typical wind pattern
over the year and across the two-decade span. Finally, the matrix W 1 is produced by
multiplying the wind direction matrix (on the left) with the matrix representing all di-
rect neighbors (on the right). This ensures that actual data is combined with the wind
direction matrix, which was created using Mata, a sublanguage of Stata. As a note, the
spatial weight matrices, which partially account for wind direction and pixel contiguity,
assign a value of 1 to direct neighbors and 0 otherwise. The diagonal elements are
always zeros, as they represent the same unit, and other entries are zeros where there
are no inter-unit connections.

Figure 5: Land use, from the prior update of the cadastre, in an example, at 2000 meter
resolution.
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Figure 6: Land use, from the latest update of the cadastre, in an example, at 2000
meter resolution.

Land use
Region The latest The prior update Baseline

Regiónn de O’higgins 2013 2005 2001
Región del Maule 2016 2009 1999

Región de Ñuble* 2015 - -
Región de B́ıo B́ıo 2015 2008 1997

Región de la Araucańıa 2017 2007 -
Notes:

Table 6: These regions fall within the specified range of latitudes. Updates typically
occur in intervals of several years, and the processed information is usually released one
year after the update is made. It is important to note that the Ñuble region, created in
2017, is a subdivision of the B́ıo B́ıo region. But the municipalities remain the same.
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Land Use, by type of forest
Type of Land Use The prior update The latest Change

Urban and Industrial areas 228 370 +
Agricultural land 1,390 870 −

Grasslands and shrublands 3,993 2,543 −
Forests Plantations 3,163 3,482 +

Native Forests 1,418 2,987 +
Wetlands 52 7 −

Areas devoid of vegetation 1,258 1,289 +
Glaciers and snow 127 91 −

Water bodies 41 31 −
Notes:

Table 7: Land Use Change in the Maule region, from the Conaf cadastre. Taking
the difference between ”the prior update” decade (2001-2012) and ”the latest update”
decade (2012-2023) at the pixel/observation level. The same methodology is applied
per municipality to analyze changes in each type of Land Use.

Graphic 7: Sankey diagram of change in the Land-Use in the most relevant categories
(Agricultural Land, Forest Plantations, Grasslands and shrubs and Native Forests).
The red section indicates the agricultural land that is being converted into forest plan-
tations.
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4 Empirical Approach

In this section I try to model the phenomenon to understand it, going from
particular to general as recommended by Herrera (2015) Therefore, I make that exercise
first with a Spatial-Panel Model that accounts for temporal auto-correlation and spatial
auto-correlation, which would give us a clue about the spillover effect (Elhorst, 2014)
then will be added the error autocorrelation term as a robustness check. Then in the
second part, I will study the Maule region in a cross-sectional way in specific interesting
periods, during which there is clearly a clear-cutting. The goal is to estimate and infer
the indirect effects, following the recommended interpretation made by LeSage and
Pace (2009), and finally, I would use my toy dataset to build indicators for the land
use change, by municipality. With the aim to test the heterogeneous effects in the
income using the datasets CASEN (National Socioeconomic Characterization Survey)
to capture at least the sign of the economic value of the calculated ecosystem service.

4.1 Spatial-Panel Approach

Beginning with the simplest model, an Ordinary Least Squares (OLS) approach
would be insufficient to capture the spatial autocorrelation between units. Nevertheless
the spillover effect would be zero if spatial dependence were not present.:

Yi = α + βXi + εi (1)

Yi = (NDVI)

Xi = (Evapotranspiration, Humidity and Precipitation)

I can calculate for each period t ∈ [1, 92] the same cross-sectional regression and
then estimate moran´s I to measure spatial auto-correlation in that regression (Moran,
1950). Then, I will calculate the average to assess the significance of the indicator (I)
across the entire panel of information. (Beenstock and Felsenstein, 2019).

I =
N∑

i

∑
j Wij

∗
∑

i

∑
j Wijûiûj∑
i û

2
i

Therefore, I calculated the average for the 92 periods:

Ī =
1

T
∗

T∑
t=1

It = 4, 982.3771

Being with a value greater than 1, it suggests the presence of spatial auto-
correlation. However, I need to test this against the null hypothesis that (I) is actually
equal to zero. The z-value I need to contrast with the normal distribution corresponds
to a critical value of 1.96.
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zobs =
Ī

V
N(0, 1) > 1.96

Where V is:

V 2 =
N2 ∗

∑
i

∑
j w

2
ij + 3(

∑
i

∑
j wij)

2 −N
∑

i(
∑

j wij)
2

T (N2 − 1)(
∑

i

∑
j wij)2

= 6.15967 ∗ 10−10

4, 982.3771

2.48187 ∗ 10−5
> 1.96

200, 751, 047.5544 > 1.96

After the test we can reject the null hypothesis, so there is evidence of a spatial
auto-correlation, so I will use the weight matrix presented in figure 4 in the Data sec-
tion. The notation is W k where k = 1 because of the size of the resolution, it´s not
going to be necessary more than one spatial lag.

The second option for the model would be a panel regression, which eliminates
constant variables but would overestimate the time autocorrelation in this case. For
instance, a preliminary attempt in the Maule region yielded a coefficient of 0.7596451
for the fourth time lag. A more realistic result will be presented in the next section
(Figure 8):

Yi,t = α + βXi,t + ci + εi,t (2)

The Spatial-Panel model is based on the spatial econometric approach to test
this relationship in the Amazon forest by (Araujo et al., 2023) which is a Spatial Panel
Model that accounts for spatial an temporal autocorrelation between the pixels. The
following equation is presented, incorporating weather variable controls:

Yi,t = α + ρYi,t−1 +
K∑
k=1

βkW
[k]
i,t Yi,t + βXi,t + εi,t (3)

Yi,t = (NDVI)

Xi,t = (Evapotranspiration, Humidity and Precipitation)

The model considers the persistence over seven temporal lags, which in our setup
each period spans a quarter of a year. The summation accounts for multiple levels of
the weight matrix, but I will only use k = 1, the term Xi,t accounts for the controls, to
mitigate the issue of omitted variable bias. The results are explained in the 5.1 section.
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4.2 Cross-sectional Approach

To understand the dynamics within the large dataset, I propose testing the best
model (3), with the addition of constant land use information. This will be applied
across two periods and in the Maule region. As the one previously presented. The
model in question would be:

yi = α + β1W
[1]
i,t yi,t + βXi,t + γZi,t + εit (4)

Yi = (NDVI)

Xi = (Evapotranspiration, Humidity and Precipitation)

Zi = (Agricultural land, Grasslands and shrublands, Forests Plantations, Native Forests...)

To avoid multicollinearity, the category ”Urban and Industrial areas” is excluded
from the estimation. Consequently, the results will be interpreted as differences relative
to cities.

4.3 Tests for economic value

Using the empirical strategy proposed by Bonilla-Mej́ıa and López (2024) but in
a cross-sectional way:

ln yauthi,m = α + γNDV IF i,m + µAgroi,m + θ(∆NDV ICP i,m)+

κ(Agroi,m ∗ (∆NDV ICP i,m)) + βXi,m + ϵi,m
(5)

(∆NDV ICP i,m) =

{
0 if NDV ICP i,m,t −NDV ICP i,m,t−1 ≥ 0,

1 if NDV ICP i,m,t −NDV ICP i,m,t−1 < 0.

The difference with the original approach lies in the use of a binary variable
∆NDV ICP i,m which denotes if there was a decrease in the average amount of com-
mercial forestry plantations at the municipality level. Here ln yauthi,m represents the
natural logarithm of the houshold income i, living in municipality m. NDV IF i,m is a
continuous variable, being the average NDVI value of total forest (Native and commer-
cial plantations) in municipality m, µAgroi,m is a binary variable taking value 1 if the
individual works in the agricultural sector and zero otherwise. Meanwhile Xi,m are the
control variables: gender, age, the quadratic of age, number of years of education, the
quadratic of the number of years of education, a binary variable if the house is in a
urban or rural area, the number of persons in the household, if the person is under the
poverty line and if is working.

Additional, κ is the coefficient of interest, that represent the interaction between
the binary variables of Agroi,m and NDV ICP i,m. The results are tested in the CASEN
survey, for the years: 2013, 2015, 2017, 2022. and a pooled version of all of them, in
section 5.3

20



5 Results analysis

In this section, I present the results obtained from the three methodologies out-
lined in the previous section. The first approach addresses the initial research question
of this thesis, which investigates the existence and impact of a spillover effect from
forests in promoting vegetation growth through local weather regulation. The second
approach incorporates land use decisions to evaluate the varying impacts of different
types of forests in the Maule region, using clear-cutting practices from 2016-2017 as
a specific example. Finally, the evidence from the previous results supports the ex-
ploration of the second research question: assessing the economic value of forests and
determining the sign of the ecosystem services they provide in local weather regulation.
The results are organized as follows: first, I test the existence of this natural phe-
nomenon in central Chile; second, I estimate the impacts resulting from clear-cutting
and present a simulation of potential conservation strategies; and finally, I calculate the
benefits of forests at the municipal level while examining the hypothesis of a mechanism
involving the agricultural sector.

5.1 Results for the Spatial-Panel Approach

Therefore, the results from the Spatial-Panel approach by region are presented
in Table 8. The panel approach removes any constants that may appear in the error
term, such as soil type or distance to the nearest body of water. The main beta of the
indirect impact of neighbors vegetation index values can be interpreted as the average
spillover effect of a marginal increase by the first degree neighbors in the wind back
trajectory. As the NDVI ranges from 0 to 1, only if the neighbors reach the hypothet-
ical higher value in the range, I mean 1, as can be seen in Figure 9 (only forests get
near that value), then the expected average impact would be of 0.36175 for example for
the Maule region. The significance an positive values indicates the evidence of forests
ability to promote vegetation growth through the water cycle process.

When comparing these results with the ones made in the Amazon Rainforest
with the Leaf Area Index (LAI) 1 as the dependant value and without any variable
controls made by Araujo et al. (2020) they found that time-lags are the coefficient with
the higher magnitude for the interpretation, a difference between evergreen amazon
rain forest and the type of vegetation in Chile is seasonality, the higher time-lag in the
Chilean case is the quarter a year ago, reflecting the difference in the type of vegetation,
as can be seen in Figure 8.

Including the control variables might initially seem controversial due to potential
endogeneity issues. However, the justification for their use is as follows: Precipitation
appears random at the pixel level each quarter, while Humidity follows a consistent
gradient from the coast to the interior of the country. Evapotranspiration also varies
by region each quarter, and although more vegetation leads to higher evapotranspira-
tion—potentially fueling this cycle—the data also indicate that croplands in the central
valley exhibit significant evapotranspiration during the hotter summer quarters, despite

1For further information on the difference between LAI and NDVI, please refer to Appendix 7.4
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O´higgins Maule Ñuble Bio b́ıo
NDVI NDVI NDVI NDVI

PP normalized 0.01240∗∗∗ -0.00191∗∗∗ -0.00247∗∗ 0.00064
(0.00068) (0.00051) (0.00084) (0.00089)

ET normalized -0.00468∗∗∗ 0.00043 -0.00128∗ 0.00372∗∗∗

(0.00048) (0.00032) (0.00058) (0.00049)
HU normalized 0.03940∗∗∗ 0.02206∗∗∗ 0.03640∗∗∗ 0.03446∗∗∗

(0.00119) (0.00106) (0.00173) (0.00132)
W 1 NDVI 0.26177∗∗∗ 0.36175∗∗∗ 0.10808∗∗∗ 0.25716∗∗∗

(0.00051) (0.00050) (0.00021) (0.00042)
Constant 0.04676∗∗∗ 0.05321∗∗∗ 0.05995∗∗∗ 0.06748∗∗∗

(0.00005) (0.00004) (0.00006) (0.00005)
Time-lags ✓ ✓ ✓ ✓
Pseudo R-squared 0.7586 0.6870 0.7165 0.6036
Observations 487390 991950 438685 877625
Periods 92 92 92 92
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: The results of estimating model 3 by region over the two-decade period from
2001 Q1 to 2023 Q4, incorporating control variables for Precipitation, Evapotranspira-
tion, and Humidity, are normalized on a 0 to 1 scale to match the dependent variable,
which also falls within this range. This normalization simplifies the interpretation of
the results. Additionally, the time lags are visualized in Figure 8.

low NDVI values, showing that captures the amount of water released by irrigation sys-
tem in croplands. Furthermore, trials using temperature data, along with example
graphics, can be found in Appendices 7.5 and 7.6. Ultimately, these variables are in-
cluded as they are enhance the conditions for vegetation growth.

22



Figure 8: These are the time lags from Table 8, covering the four regions in the study,
reveal a high and significant peak at the fourth time lag, demonstrating the persistence
of pixel values from one year prior. This peak is consistently significant at the 0.01%
level. In comparison to results from the Amazon forest—where the best predictor is
the first time lag due to the evergreen nature. For the mixed and seasonal forests in
this study, the fourth time lag proves to be a better predictor than the immediate past.

The positive and significant coefficients of NDVI for first-degree neighbors pro-
vide evidence of the natural phenomenon that forest units regulate local weather. The
indirect impact, often referred to as ”spillover,” can be interpreted as the impact of
neighbour vegetation. However, given the diversity of land uses involved, I remain cau-
tious and at least accept the existence of correlation. This raises an important question:
is the clustering of forest units a natural occurrence, a result of human decisions in their
placement, or a combination of both? Specifically, in the case of commercial forest
plantations, Table 9 offers insight. It presents a spatial-panel regression that includes a
spatial autocorrelation term for the errors. This term is significant and carries substan-
tial weight. The spatial autocorrelation coefficient of NDVI diminishes in almost every
region except for Biob́ıo, suggesting that an unobserved spatial factor is influencing the
spatial distribution more than the vegetation itself.

A plausible explanation for Biob́ıo’s distinct result could be the presence of more
native forests near the coast. In light of this unclear outcome, I will examine whether
land use data provides further clarity. In the next section (4.2), I will delve deeper
into this question, considering that the error term may reflect land use choices made
by landowners. I will explore the assumption that land use remains relatively constant
over at least a decade and propose an alternative approach.
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O´higgins Maule Ñuble Biob́ıo
NDVI NDVI NDVI NDVI

PP normalized 0.04455∗∗∗ -0.00900∗∗∗ -0.01221∗∗∗ -0.00032
(0.00169) (0.00118) (0.00206) (0.00113)

ET normalized -0.00078 0.00574∗∗∗ 0.01254∗∗∗ 0.00792∗∗∗

(0.00110) (0.00073) (0.00140) (0.00063)
HU normalized 0.04102∗∗∗ 0.05181∗∗∗ 0.08852∗∗∗ 0.04921∗∗∗

(0.00294) (0.00242) (0.00418) (0.00170)
W 1 NDVI -0.00126 0.03061∗∗∗ 0.01194∗∗∗ 0.18377∗∗∗

(0.00098) (0.00110) (0.00054) (0.00111)
W 1 Error NDVI 0.33795∗∗∗ 0.43402∗∗∗ 0.12724∗∗∗ 0.12118∗∗∗

(0.00089) (0.00105) (0.00056) (0.00140)
Constant 0.04488∗∗∗ 0.05169∗∗∗ 0.05840∗∗∗ 0.06707∗∗∗

(0.00005) (0.00004) (0.00006) (0.00005)
Time-lags ✓ ✓ ✓ ✓
Pseudo R-squared 0.9142 0.9246 0.8244 0.7256
Observations 487390 991950 438685 877625
Periods 92 92 92 92
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 9: The result of estimating model 3 by region, in the two decades span from
2001 Q1 to 2023 Q4, but with the difference with Table 8, is the incorporation of the
autocorrelation term of the error in the row of W 1 Error NDV I the coefficients of
NDVI remain significant but with a lower magnitude except by the O´higgins region
which is not significant anymore.
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5.2 Results for the Spatial Cross-sectional Approach

The reason for studying the dataset by period is to capture fixed or constant
effects that may be overlooked in the Panel approach. Consider, for instance, the im-
pact of land use, which reflects human decisions influencing what can grow in a given
area. Assuming that land use remains constant and valid over a decade, is possible to
analyze the relationship between land use and NDVI values. Specifically, this approach
allows to highlight the differences between native and commercial forest plantations.
Evenmore, it enables to identify minimal evidence of a naive difference before and after
clear-cutting.

Figures 1 and 2 present the NDVI values for the Maule region for the fourth
quarter of 2016 and the fourth quarter of 2017. In the lower-left corner, near the city
of Constitución, a significant hollow can be observed, representing a clear-cutting of
mature forest plantations, as depicted in Figure 2. Table 10 displays the results of
model (5) applied four times: the first two columns correspond to 2016, and the last
two columns correspond to 2017, highlighting the differences when estimating the fixed
effects of Land Use, before and after the clear-cutting.
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2016q4 2016q4 2017q4 2017q4
NDVI NDVI NDVI NDVI

NDVI
PP normalized 5.64927∗∗∗ 3.30560∗∗∗ 1.40831∗∗∗ 0.85341∗∗∗

(0.14836) (0.11283) (0.11669) (0.09085)
ET normalized 0.22250∗∗∗ 0.06967 0.49965∗∗∗ 0.34874∗∗∗

(0.04578) (0.03751) (0.04890) (0.03977)
HU normalized 0.91270∗∗∗ 0.43638∗∗∗ 0.84426∗∗∗ 0.38424∗∗∗

(0.01669) (0.01371) (0.01596) (0.01277)
Commercial Forests 0.03732∗∗∗ 0.01713∗

(0.00644) (0.00707)
Native Forests 0.06504∗∗∗ 0.08348∗∗∗

(0.00657) (0.00726)
(0.00727) (0.00801)

Constant -0.70426∗∗∗ -0.10278∗∗∗ -0.57832∗∗∗ -0.13399∗∗∗

(0.03715) (0.03121) (0.03827) (0.03182)
W
NDVI 0.08985∗∗∗ 0.11661∗∗∗ 0.09281∗∗∗ 0.13845∗∗∗

(0.00626) (0.00465) (0.00726) (0.00520)
Pseudo 0.4952 0.7036 0.3993 0.6384
R-cuadrado 11670 11670 11670 11670
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 10: The results of the estimation of Model 4 for the periods of 2016 Q4 and 2017
Q4 in the Maule region, before and after clear-cutting, are presented here. The third
and fifth columns display the outcomes while controlling for the fixed effects of land use
types. Only the results for commercial forests and native forests are shown; however,
these results were derived using all types of land use, excluding urban and industrial
areas. Therefore, the results should be interpreted as the differences relative to these
excluded land use types.

As expected, in the fourth quarter of 2016, the first-degree neighbor W 1 coeffi-
cient β1 = 0.11661 is lower than the value obtained from the panel approach, but still
significant. Consistent with the conclusions from the results in section 4.1, this finding
suggests the presence of the natural phenomenon within this weight matrix.

When In the 2016 model, the Land Use data is incorporated as control binary
variables, taking the value of one for specific types of land use and zero otherwise. The
coefficients for Native Forests and Plantations are both significant, but the magnitude
for Native Forests is notably higher. This suggests that native forests, by being more
complex, with multiple layers of vegetation, usually higher NDVI values and being clus-
tered, have a stronger spatial effect. Nevertheless, after the clear-cutting in the 2017
models, I observed that the forest’s ability to self-regulate by influencing local weather
conditions seemed to diminish for the commercial plantations. The previously observed
relationships changed significantly, with the direction and magnitude of control vari-
ables deviating from the averages calculated in the results of section 4.1. However, upon
adding fixed effects of land use, it became evident that the substantial spatial effect of
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Figure 9: Frquency of the type of Land Use in 2017 Q4

first-degree neighbors could be attributed to the remaining native forests located on the
right side of the map near the Andean mountains (See Figures 5 and 6). This is sup-
ported by the continued significance of the coefficient for Native Forests (0.08348***),
whereas the coefficient for Plantations only retains significance at the 5% level.

The impact of including the type of Land Use is noteworthy, as evidenced by
the substantial increase in the Pseudo R2 value. This highlights the significance of
incorporating this previously omitted variable into the analysis. As discussed in the
introduction, it underscores the economic challenge in the human decision about land
use, where utility maximization is constrained by natural factors. With these results in
mind, is that for taking the decision, is necessary an amplified valuation of the ecosys-
tem service of forests, the small simulation will explore that.

5.2.1 Simulation

Now, considering the simulation, let’s explore a scenario in which a government
aims to identify optimal locations for forest conservation that would positively impact
productive units, such as agricultural land or plantations. To inform this decision, we
can use NDVI values from the fourth quarter of 2016, both before clear-cutting and
after the shock, as presented in Table 11. The data indicate that commercial forest
plantations have a slightly higher average NDVI value compared to native forests but
show a lower standard deviation. The simulation examines the hypothetical situation
of what would happen if a pixel had remained intact instead of being cut down.
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time Mean Std. dev. Minimum Maximum
Native Forests 2016 Q4 .6672151 .1208077 0 .8837

Forest Plantations 2016 Q4 .6144844 .1383705 0 .8782
Native Forests 2017 Q4 .6484445 .1486165 0 .8695

Forest Plantations 2017 Q4 .6493789 .1576794 0 .8719

Table 11: It´s presented for both type of forest, in the two periods of study the: the
mean, standard deviation and the range of NDVI for Native Forests and Plantations.

The simulation examines the hypothetical scenario in which a forest unit cut in
2017 Q4 would have remained intact prior to clear-cutting. The selected point, marked
by the yellow dot in Figure 8, reveals a small but significant global impact. The NDVI
value before the cut was 0.8204, while it decreased to 0.3297 in a pixel of commercial
plantations. Figure 8 illustrates the difference between the two predictions based on
this small change at the described point. Interestingly, this change generates an expan-
sion wave. The simulation suggests that preserving the observation with ID number
23577 as a forest could positively influence distant agricultural units in the direction of
the wind. This approach could serve as a valuable tool for identifying which forest units
significantly impact neighboring agricultural areas or could be applied in a randomized
controlled trial conducted by the forestry industry.
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Figure 10: Global Spillover effect, the values are the difference in the prediction between
before and after the change in the value of NDVI observation with ID´s number 23577
in the Maule region in the year 2017 fourth quarter.

5.3 Results for the tryouts, for economic value

Finally, to study the economic value of native forests and commercial forest
plantations, the identification approach involved analyzing municipality-level data on
changes of levels in vegetation amount. Tables 12 and 13 present the results from es-
timating equation (5). In both tables the dependant variable is ”ln yauth” represents
the natural logarithm of the autonomous income of the household.

Using the CASEN survey and land use change information from Table 7 at the
municipality level, this analysis examines household income. Although the survey col-
lects individual observations, household income is aggregated based on family members,
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providing broader coverage since a household could be affected by the income of any
family member. The control variables, as previously described, include the individual’s
gender, age, the quadratic term of age, years of education, the quadratic term of educa-
tion, and the area of residence—coded as zero for rural areas and one for urban areas.
The variable ”number” represents the number of members in the household, while ”lp”
is a binary variable indicating poverty status: zero if the person is above the poverty
line and one if otherwise. Additionally, ”employed” is a binary variable, equal to one if
the individual was working at the time of the interview. The complete results can be
found in Appendix 7.8.

The objective of this section was to measure how the ”NDVI Forests” that is the
average NDVI of any type of forest vegetation in the municipality as an indicator of for-
est quantity impacts the household income. Higher NDVI values at the municipal level
are correlated with higher income, a trend consistent across the last four CASEN sur-
veys, as shown in Table 12. The ”Pool” column aggregates these four surveys, with the
estimation controlling for year-to-year variations in case of weather anomalies. These
results assume that the individuals in the sample are similar to those in a random sam-
ple and that the variables are comparable. However, an issue with these results is the
potential inflation that may contaminate the findings.

Regarding the mechanism of interest, the three variables in Table 12 aim to de-
termine whether commercial forestry positively impacts income through weather regu-
lation. The hypothesis posits that in municipalities experiencing a decrease in average
NDVI—indicative of clear-cutting—individuals working directly or indirectly in the
agricultural industry would see a decrease in their income. This impact is expected to
be captured by the interaction between these two binary variables. This interaction
would reflect the differences between municipalities that underwent clear-cutting and
those that did not, comparing farmers to non-farmers. The results are ambiguous; while
this hypothesis holds true for 2022—one of the driest years of the recent drought—other
surveys show the opposite sign, suggesting that the negative externalities may outweigh
the benefits of this ecosystem service.
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(2022) (2017) (2015) (2013) (Pool)
ln yauth ln yauth ln yauth ln yauth ln yauth

NDVI Forests 0.10270** 0.27540*** 0.26923*** 0.08373** 0.14109***
(0.04784) (0.05100) (0.04085) (0.04155) (0.02197)

Decrease NDVI -0.04832*** 0.03017*** -0.04059*** -0.00794 -0.02143***
of Commercial
Forests

(0.01041) (0.00800) (0.00724) (0.00737) (0.00381)

B Farmer * De- -0.06431** 0.06773*** -0.01603 0.03978* 0.02511**
crease NDVI
of Commercial
Forests

(0.03124) (0.02131) (0.01991) (0.02192) (0.01032)

Binary Farmer 0.00319 -0.04278** -0.01060 -0.03164*** -0.04057***
(0.02845) (0.01743) (0.01690) (0.01136) (0.00802)

Constant 12.22845*** 11.75730*** 11.79281*** 11.76584*** 11.79599***
(0.04532) (0.04836) (0.03877) (0.03929) (0.02128)

Control variables ✓ ✓ ✓ ✓ ✓
Control by year X X X X ✓
Control by region ✓ ✓ ✓ ✓ ✓
Pseudo R-squared 0.3855 0.3878 0.4288 0.4953 0.4398
Number of observa-
tions

42584 46753 56834 47452 193623

Municipalities 98 98 98 98 98
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Results of model number five with the CASEN survey, but controlling with
the region level, in he CASEN surveys of 2022, 2017, 2015 and 2013, and also an
extension with a pool of the four surveys.

To incorporate the municipality level, the key difference between Table 12 and
Table 13 is that the former controls for regions, while the latter controls directly for
municipalities. Both tables compare against the category with more observations Ta-
ble 12 compares to the Maule region, while Table 13 compares to the municipality of
Rancagua in the O’Higgins region. Due to multicollinearity, the average NDVI by mu-
nicipality variable was lost, but the results remain robust, with consistent signs. The
pooled results suggest that, on average, a decrease in the NDVI of commercial forests
benefits farmers. However, 2022 remains a significant outlier worth further investiga-
tion. This positive relationship between a decrease in average NDVI and income may
be influenced by factors such as land use changes to farmlands, road expansions, or
other underlying processes.
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(2022) (2017) (2015) (2013) (Pool)
ln yauth ln yauth ln yauth ln yauth ln yauth

Decrease NDVI 0.12066** -0.33627*** 0.00124 -0.42795*** -0.00538
of Commercial
Forests

(0.05571) (0.06388) (0.04382) (0.07686) (0.00422)

B Farmer * De- -0.06010* 0.06827*** -0.02853 0.06806*** 0.03002***
crease NDVI
of Commercial
Forests

(0.03280) (0.02219) (0.02119) (0.02307) (0.01039)

Binary Farmer 0.00172 -0.03018* 0.00343 -0.03215*** -0.03719***
(0.02979) (0.01785) (0.01773) (0.01165) (0.00808)

Constant 12.30483*** 12.04828*** 12.19142*** 11.99639*** 12.05892***
(0.06196) (0.03183) (0.02903) (0.02795) (0.01545)

Control variables ✓ ✓ ✓ ✓ ✓
Control by year X X X X ✓
Control by munici-
pality

✓ ✓ ✓ ✓ ✓

Pseudo R-squared 0.3978 0.3980 0.4387 0.5035 0.4457
Number of observa-
tions

42584 46753 56834 47452 193623

Municipalities 98 98 98 98 98
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Results of model number five with the CASEN survey, but controlling with
the municipality level, in he CASEN surveys of 2022, 2017, 2015 and 2013, and also an
extension with a pool of the four surveys.

6 Conclusion

The benefits of forests in terms of local climate regulation stem from their ability
to transport moisture into the continent’s interior, their role in the water cycle, and
their capacity to lower temperatures. Although this ecosystem service is challenging
to quantify, methods have been developed to measure both the existence and magni-
tude of this effect. However, accurately determining its economic value remains difficult.

This thesis builds on the evidence and models developed for the Amazon rain-
forest and applies them to Chile’s south-central region. This area is characterized by
extensive commercial forests and small remnants of native forests, with varying land
uses. Since most forests are concentrated along the coast, the removal or change in land
use of commercial plantations—the second-best provider of this ecosystem service after
native forests—would result in a loss of these benefits. Finally, the economic value of
this service is assessed through the agricultural industry.

A spatial and temporal model was used to measure the average effect per re-
gion over the past two decades, within the latitudes of 30° and 38° south in Chile, at
a resolution of 2000 meters. This model aimed to capture the effect of vegetation in
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itself, using wind direction measured through the spatial matrix W. The results were
statistically significant at the 0.1% level, with a low magnitude ranging between 0.1
and 0.4. This persistence within that range also highlighted seasonal variability, as
the forest is not completely evergreen. However, tests for error autocorrelation suggest
the presence of an additional, larger unmeasured effect—except in the Biob́ıo region.
Where, the phenomenon remains relevant, possibly due to the greater concentration of
native forest remnants along the coast compared to the other three regions.

Regarding what this unmeasured autocorrelation could be, a plausible option
could be the land use decision. For this reason, testing in two periods before and after
deforestation, where it is verified that the spatial effect is lost due to this shock and
that more stable land use as the Native forests can have a better effect in determining
the level of vegetation and the land use of the neighboring units.

About the economic value, while a positive relationship is found between munic-
ipalities with higher average forest vegetation levels and higher household incomes, the
mechanism through the agricultural sector remains unclear. It is also uncertain whether
the negative externalities of commercial forests outweigh the positive ones, though the
results suggest that this may be the case.

Lastly, it remains to be determined what distinguishes the Biob́ıo region from the
other three, allowing it to maintain the magnitude of spatial autocorrelation. A plausi-
ble solution would be testing at different levels of resolution to address the Modifiable
Areal Unit Problem (MAUP) strengthens the robustness of the results but demands
greater computational capacity. Additionally, questions regarding historical average
wind direction remain unresolved, with the potential for non-parametric models to bet-
ter capture the connections between pixels.

In closing, the results confirm the existence of this phenomenon at varying mag-
nitudes, highlighting that native forests are the optimal land use choice to sustain this
positive externality. The role of commercial forests as a second-best option remains
uncertain. However, the methodologies used in the simulation could be expanded by
incorporating databases with direct information from agricultural fields adjacent to
planted forests. Additionally, conducting randomized controlled experiments could of-
fer valuable insights for measuring this effect. This remains a promising area for future
research.
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7 Appendix

7.1 Back trajectories average

To calculate the average back trajectory for central-south Chile, I deliberately
selected three specific points: (-35.00,-71.00); (-37.00,-71.50); (-39.00,-72.00) Then, us-
ing the program ’SplitR’ and the HYSPLIT model, I calculated the back trajectories
for the fifth and sixth day of every first month, for each quarter of the year, aiming to
capture the seasonal variations (in the southern hemisphere). Additionally, I calculate
the average of the back trajectories with four specific years, chosen deliberately for
analysis: 2001; 2008; 2016; 2023. (I´m averaging 48 datasets, with 294 observations
each one)

For example, this is how is built the average for the point (-37.00, -71.50) and
looks like this in 2023:
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Figure 11: Example of the construction of the average of the back trajectory.
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7.2 Exploratory investigation

In Figure (1), I present exploratory evidence of this phenomenon. The blue
lines depict annual precipitation data from various stations of the Dirección Meteo-
rológica de Chile (from the DGAC: Dirección General De Aeronáutica Civil) spanning
central-south Chile, with lighter shades representing northern regions and darker shades
representing southern regions. Notably, as one moves from north to south, there is a
general increase in annual precipitation, with the exception of the Valdivia station, lo-
cated near the coast and surrounded by national parks with native forests.

Of particular interest is the peculiar correlation observed since 2000 between
the red and orange lines, representing the annual production of wood and furniture in
Chile, respectively. The red line depicts nominal prices, while the orange line shows
prices adjusted for inflation (data sourced from the Central Bank of Chile). Notably,
two peaks in wood production coincide with dry years characterized by below-average
precipitation. To achieve an increase in wood production, the clearcutting of mature
trees is necessary. Consequently, the loss of commercial forests appears to be inversely
correlated with decreases in annual precipitation. Notable coincidences occurred in
2007 and 2016.

Figure 12: Original creation, with data from DGAC and the Central Bank of Chile
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7.3 Land Use

Refer to Figure 18 to view the complete map of Land Use, based on the latest
cadastre information from CONAF, within the study range.

7.4 Difference between LAI (Leaf Area Index) and NDVI (Nor-
malized Difference Vegetation Index):

The reason for choosing the NDVI (The Normalized Difference Vegetation In-
dex) as the vegetation indicator, was made after weighing the following information:

Both satellite remote sensing indices are used to measure and monitor vegetation
on a large scale, and the values produced by both indices are typically correlated.
However, the methods by which they measure vegetation are quite different. LAI, being
the older method, and its most used definition (Copernicus, 2023) is that it measures
half of the total area of leaves, since it only takes the image from above and not from
other angles. It is also a good indicator of leaf density:

LAI = Leaf Area m2/Floor Area m2

However, one problem that the index faces is that it only takes one layer of
leaves, so the tree canopy covers other plant layers, It is also sensitive to seasonality.
In summary, it is just an index of the density of the vegetation cover.

On the other hand, NDVI takes advantage of light waves, which plants reflect
when photosynthesis (from 700 to 1100 nm being red and almost infrared light waves).
So the greater the concentration of plants, the greater the reflection of these waves,
that are captured by the sensors. It is defined as the normalized difference because it
is the subtraction between the reflection of visible light and near-infrared light. The
more visible light that is reflected, the lower the density of plants, and the opposite, the
lower the reflection of visible light, means the greater the reflection of almost infrared
light, which is why there would be a higher density of vegetation.

NDV I = (NIR− V IS)/(NIR + V IS)

Being: NIR (Near Infrared) and VIS (Visible) The Index ranges between -1 to 1.
Values close to 1 indicate the densest possible vegetation, while a value of zero signifies
no vegetation. Values close to -1 indicate other types of surfaces, such as water, snow,
and clouds (NASA, 2000).

However, NDVI presents challenges when estimating vegetation in urban areas,
as the level of reflection is compromised. However, it is preferable to use NDVI as
an indicator of vegetation health. NDVI is more complex and goes beyond merely
quantifying the number of leaves; In its favor, is already a normalized index and is the
one that more comprehensively captures vegetation compositions.
Source links: LAI NDVI
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7.5 Example of the data and regression with the temperature
levels

Figure 14: Exmple of the data in the Maule region with the Land Surface Temperature
Data, from left to right, in the periods of 2016q4, 2017q1, 2017q2, 2017q3 and 2017q4

Another control variable considered for the spatial-panel model was Land Surface
Temperature (LST), which shows a negative correlation with the amount of vegetation,
resulting in a negative average impact value of LST in the pixel. However, further in-
vestigation is required due to potential endogeneity issues. The question arises whether
lower temperature values create better conditions for vegetation growth, or whether
large amounts of vegetation, such as forests, are responsible for reducing temperature.
My main concern is the latter, but this relationship requires more study.
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O´higgins Maule Ñuble Biob́ıo
NDVI NDVI NDVI NDVI

PP normalized 0.00900∗∗∗ -0.00241∗∗∗ -0.00437∗∗∗ 0.00254∗∗

(0.00068) (0.00051) (0.00086) (0.00088)
ET normalized 0.02798∗∗∗ 0.00174∗∗∗ 0.01060∗∗∗ 0.00832∗∗∗

(0.00073) (0.00047) (0.00094) (0.00086)
HU normalized 0.05512∗∗∗ 0.02329∗∗∗ 0.04894∗∗∗ 0.03247∗∗∗

(0.00122) (0.00111) (0.00186) (0.00138)
LST normalized -0.07552∗∗∗ -0.00268∗∗ -0.03124∗∗∗ -0.01028∗∗∗

(0.00130) (0.00084) (0.00197) (0.00208)
W 1 NDVI 0.26324∗∗∗ 0.37105∗∗∗ 0.10482∗∗∗ 0.10486∗∗∗

(0.00051) (0.00051) (0.00022) (0.00016)
Constant 0.04642∗∗∗ 0.05302∗∗∗ 0.06051∗∗∗ 0.06663∗∗∗

(0.00005) (0.00004) (0.00007) (0.00005)
Time-lags ✓ ✓ ✓ ✓
Pseudo R-squared 0.7796 0.3645 0.7213 0.6972
Observations 486795 991015 432055 869125
Periods 92 92 92 92
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 14: The result of estimating model 3 by region, in the two decades span from
2001 Q1 to 2023 Q4, but with the difference with Table 8, is the incorporation of the
contro variable Land Surface Temperature (LST).
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7.6 Graphics of example of the Data Set for the other variables

Figure 15: Exmple of the data in the Maule region with the NDVI Data, from left to
right, in the periods of 2016q4, 2017q1, 2017q2, 2017q3 and 2017q4

Figure 16: Exmple of the data in the Maule region with the Evapotranspiration Data,
from left to right, in the periods of 2016q4, 2017q1, 2017q2, 2017q3 and 2017q4
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Figure 17: Exmple of the data in the Maule region with the Humidity Data, from left
to right, in the periods of 2016q4, 2017q1, 2017q2, 2017q3 and 2017q4

Figure 18: Exmple of the data in the Maule region with the Precipitation Data, from
left to right, in the periods of 2016q4, 2017q1, 2017q2, 2017q3 and 2017q4

7.7 Regression by type of forest

The following tables present the raw results from regressions conducted sepa-
rately for each type of forest: Native Forests and Commercial Plantations, using the
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latest land use data from the SIT. The spatial-panel regression focuses on the last
decade, from 2011 to 2023. The results indicate that the average impact of Native
Forests is slightly higher than that of Commercial Plantations. However, these results
may be imperfect due to the presence of isolated pixels (”islands”) in the data—pixels
without neighboring observations—resulting from only selecting the sample of pixels
containing these types of forests.

Commercial Plantations Native Forests
NDVI NDVI

W 1 NDVI 0.07911∗∗∗ 0.09504∗∗∗

(0.00023) (0.00023)
Constant 0.04692∗∗∗ 0.07347∗∗∗

(0.00004) (0.00007)
Time-lags ✓ ✓
Pseudo R-squared 0.3922 0.9246
Observations 569037 991950
Periods 56 56
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 15: The result of estimating model 3 by type of forests in the four regions, in the
last decades span from 2011 Q1 to 2023 Q4. But also the spatial-panel regression was
made with seve time-lag.

7.8 Results Tables of the economic value section

Results when controlling by the region:
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(2022) (2017) (2015) (2013) (Pool)
ln yauth ln yauth ln yauth ln yauth ln yauth

Gender 0.02590*** -0.00135 0.00563 0.00680 0.00756**
(0.00750) (0.00725) (0.00648) (0.00635) (0.00345)

Age -0.00151 0.00066 0.00144 0.00265*** 0.00089*
(0.00109) (0.00101) (0.00091) (0.00092) (0.00049)

Age2 0.00002* 0.00001 -0.00001 -0.00001 0.00000
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Years of education -0.01526*** 0.00262 -0.00300 -0.00397 -0.00520***
(0.00352) (0.00358) (0.00312) (0.00299) (0.00164)

Years of education2 0.00353*** 0.00292*** 0.00316*** 0.00339*** 0.00327***
(0.00016) (0.00018) (0.00016) (0.00015) (0.00008)

Number 0.21478*** 0.19089*** 0.18050*** 0.18840*** 0.19136***
(0.00249) (0.00229) (0.00211) (0.00194) (0.00110)

Employed 0.37183*** 0.29070*** 0.23490*** 0.21423*** 0.27442***
(0.00869) (0.00832) (0.00742) (0.00727) (0.00396)

LP -1.31876*** -1.13454*** -1.17567*** -1.13731*** -1.16999***
(0.01867) (0.01292) (0.01007) (0.00883) (0.00571)

Rural -0.11591*** -0.10304*** -0.06111*** -0.08317*** -0.08926***
(0.00887) (0.00869) (0.00759) (0.00769) (0.00410)

NDVI Forests 0.10270** 0.27540*** 0.26923*** 0.08373** 0.14109***
(0.04784) (0.05100) (0.04085) (0.04155) (0.02197)

Decrease NDVI -0.04832*** 0.03017*** -0.04059*** -0.00794 -0.02143***
of C.F. (0.01041) (0.00800) (0.00724) (0.00737) (0.00381)
B Farmer * De- -0.06431** 0.06773*** -0.01603 0.03978* 0.02511**
crease NDVI of C.F. (0.03124) (0.02131) (0.01991) (0.02192) (0.01032)
Binary Farmer 0.00319 -0.04278** -0.01060 -0.03164*** -0.04057***

(0.02845) (0.01743) (0.01690) (0.01136) (0.00802)
Year 2015 0.03468***

(0.00451)
Year 2017 0.08614***

(0.00468)
Year 2022 0.36836***

(0.00537)
Constant 12.22845*** 11.75730*** 11.79281*** 11.76584*** 11.79599***

(0.04532) (0.04836) (0.03877) (0.03929) (0.02128)
Control by region ✓ ✓ ✓ ✓ ✓
Pseudo R-squared 0.3855 0.3878 0.4288 0.4953 0.4398
Number of observations 42584 46753 56834 47452 193623
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16: Results of model number five with the CASEN survey, but controlling with
the region level, in he CASEN surveys of 2022, 2017, 2015 and 2013, and also an
extension with a pool of the four surveys, where the year of 2013 is the category left
behind for the regression. Also the region category also left for interpretation is the
Biob́ıo region.
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Results when controlling by the Municipality:

(2022) (2017) (2015) (2013) (Pool)
ln yauth ln yauth ln yauth ln yauth ln yauth

Gender 0.02595*** -0.00018 0.00648 0.00580 0.00788**
(0.00744) (0.00721) (0.00644) (0.00632) (0.00344)

Age -0.00120 0.00076 0.00131 0.00249*** 0.00092*
(0.00108) (0.00100) (0.00090) (0.00091) (0.00048)

Age2 0.00002 0.00001 -0.00001 -0.00001 -0.00000
(0.00001) (0.00001) (0.00001) (0.00001) (0.00001)

Years of education -0.01596*** 0.00169 -0.00374 -0.00507* -0.00576***
(0.00347) (0.00355) (0.00310) (0.00297) (0.00163)

Years of education2 0.00341*** 0.00285*** 0.00311*** 0.00334*** 0.00319***
(0.00016) (0.00018) (0.00016) (0.00015) (0.00008)

Number 0.21444*** 0.18983*** 0.17916*** 0.18759*** 0.19041***
(0.00252) (0.00229) (0.00209) (0.00195) (0.00110)

Employed 0.36817*** 0.28647*** 0.23409*** 0.21380*** 0.27284***
(0.00865) (0.00831) (0.00738) (0.00725) (0.00395)

LP -1.30970*** -1.12007*** -1.16105*** -1.12047*** -1.15697***
(0.01856) (0.01291) (0.01000) (0.00879) (0.00570)

Rural -0.04849*** -0.06523*** -0.03509*** -0.05376*** -0.04985***
(0.00961) (0.00909) (0.00793) (0.00803) (0.00429)

Decrease NDVI 0.12066** -0.33627*** 0.00124 -0.42795*** -0.00538
of C.F. (0.05571) (0.06388) (0.04382) (0.07686) (0.00422)
B Farmer * De- -0.06010* 0.06827*** -0.02853 0.06806*** 0.03002***
crease NDVI of C.F. (0.03280) (0.02219) (0.02119) (0.02307) (0.01039)
Binary Farmer 0.00172 -0.03018* 0.00343 -0.03215*** -0.03719***

(0.02979) (0.01785) (0.01773) (0.01165) (0.00808)
Year 2015 0.02565***

(0.00462)
Year 2017 0.07801***

(0.00462)
Year 2022 0.34447***

(0.00534)
Constant 12.30483*** 12.04828*** 12.19142*** 11.99639*** 12.05892***

(0.06196) (0.03183) (0.02903) (0.02795) (0.01545)
Municipality ✓ ✓ ✓ ✓ ✓
Pseudo R-squared 0.3978 0.3980 0.4387 0.5035 0.4457
Number of observations 42584 46753 56834 47452 193623
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 17: Results of model number five with the CASEN survey, but controlling with
the municipality level, in he CASEN surveys of 2022, 2017, 2015 and 2013, and also an
extension with a pool of the four surveys, where the year of 2013 is the category left
behind for the regression. Also the region category also left for interpretation is the
Biob́ıo region.
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7.9 Treatment of missing values

To understand the decision made during the correction process for missing val-
ues is necessary to see Figure 17, which has the missing values for the NDVI variable.
The red squares represent the missing values for the fourth quarter of 2016, accounting
for 1,652. Most of these missing values are located along the coastline or high in the
Andean mountains, with a few exceptions in major cities within the central valley and
near Concepción city, which describes the Biob́ıo river. To avoid gaps in the data, the
decision was made to change the missing values to zeros. The areas with missing values
are the major cities of Rancagua, Temuco, Chillán, and Concepción, which generally
have near-zero vegetation. Also, the mountainous regions are likely to consist of snow
or rocks, while the coastal areas might include seashores due to the grid size. A similar
problem is seen across the periods so the same decision was taken.

Moreover, as indicated in Appendix 6.4, NDVI values below zero typically rep-
resent water, snow, or clouds. These account for only 11 out of 33,336 observations in
the 2016, fourth quarter, approximately 0.033% of the data. This percentage remains
consistent across other periods. To facilitate interpretation, the decision was made to
adjust the NDVI range from zero to one.
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Figure 13: Land use, from the latest cadastre, in the total range of study, without any
correction for the missing values.
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Figure 19: Missing values for the NDVI variable at the year 2016, fourth quarter. In
the total range of study.
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